
Iroha Devs #13
Meeting of Iroha maintainers  
with open-source community

Agenda

1. Progress since Iroha Dev #12

2. Current iteration (Sprint 10)

3. Current process and tools used

4. How to suggest changes or improvements

5. Upcoming α release

6. Q&A

Progress since Iroha Dev #12

Iroha Dev #12 were 1st of December. Since the meeting, we have implemented:

1. Nested key-value storage for account data

2. Changes in SonarQube

3. Homebrew installation

4. Ansible deployment and docs for peer network set up in Ansible

5. Subtract asset quantity command

6. Detach role command

7. ed25519 library with SHA3 hashing

8. SWIG bindings for transaction generation (in Java, Python)

9. GetTransaction API

Nested key-value storage for account data

Nested key-value storage for account data
{
"others" : {

 “admin@soramitsu" : {
“name”:
“46a8a10ce31963a10ea744b8ff301a0998c4560ddd4903
1bcae1c3e556e605c81a4c8c1a369249e2bec63869a0f3
887481c8ef929a5004f28fd3be3985f0af69”

}

},
"own" : {

“name”: “Takemiya”,
“surname”: “Makoto”

}
}

Hash of data

Data, stored in account

Nested key-value storage for account data

message SetAccountDetail{
 string account_id = 1;
 string key = 2;
 string value = 3;
}

Can be executed for own account, or for
another, if this account has granted
permissions to write in the storage

SonarQube changes

Extended the reports for
feature branches to track
the coverage.

Ansible deployment

https://github.com/hyperledger/iroha/blob/master/deploy/ansible/provisioning.yml

We now use Ansible playbook to
set up peer network for arbitrary
number of nodes. 
 
Please refer to this guide:

https://soramitsu.atlassian.net/
wiki/spaces/IS/pages/127008772/
How+to+run+Iroha+network+with
+ansible

https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible
https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible
https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible
https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible

Ansible deployment

We now use Ansible playbook to
set up peer network for arbitrary
number of nodes. 
 
Please refer to this guide:

https://soramitsu.atlassian.net/
wiki/spaces/IS/pages/127008772/
How+to+run+Iroha+network+with
+ansible

https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible
https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible
https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible
https://soramitsu.atlassian.net/wiki/spaces/IS/pages/127008772/How+to+run+Iroha+network+with+ansible

Subtract asset quantity

Subtract asset quantity

message SubtractAssetQuantity {
 string account_id = 1;
 string asset_id = 2;
 Amount amount = 3;
}

The idea is to let asset creator user  
(who has CanSubtractAssetQuantity permission)
to change number of mutable assets

Detach role command

Detach role command

message DetachRole {
 string account_id = 1;
 string role_name = 2;
}

The idea is to manage roles of user — and detach roles
of user, if we need to downgrade him/her.

ed25519 library with SHA3 hashing

ed25519 library with SHA3 hashing

SWIG bindings for transaction generation

SWIG bindings for transaction generation
import iroha

builder = iroha.ModelBuilder()
crypto = iroha.ModelCrypto()

me_kp = crypto.generateKeypair()
peer_kp = crypto.generateKeypair()
signatory_kp = crypto.generateKeypair()
account_kp = crypto.generateKeypair()
time = 1512549580
startCounter = 1
creator = "me"
signatory = "fyodorkek-san"

commands = []

commands.append(builder.txCounter(startCounter).creatorAccountId(creator)  
.createdTime(time).addPeer("127.0.0.1:50051", peer_kp.publicKey()).build())

commands.append(builder.txCounter(startCounter+1).creatorAccountId(creator)  
.createdTime(time+1).createDomain("iroha", "admin").build())

commands.append(builder.txCounter(startCounter+2).creatorAccountId(creator)  
.createdTime(time+2).createAccount("luckychess", "iroha",
account_kp.publicKey()).build())

SWIG bindings for transaction generation
import java.math.BigInteger;
import java.util.*;

public class my {
 static {
 try {
 System.loadLibrary("iroha");
 } catch (UnsatisfiedLinkError e) {
 System.err.println("Native code library failed to load. \n" + e);
 System.exit(1);
 }
 }

 public static void main(String argv[]) {
 ModelBuilder builder = new ModelBuilder();
 ModelCrypto crypto = new ModelCrypto();
 Keypair me_kp = crypto.generateKeypair();
 Keypair peer_kp = crypto.generateKeypair();
 Keypair signatory_kp = crypto.generateKeypair();
 Keypair account_kp = crypto.generateKeypair();
 long time = 1512549580;
 long startCounter = 1;
 String creator = "me";
 String signatory = "fyodorkek-san";

 ArrayList<UnsignedTx> commands = new ArrayList<UnsignedTx>();
 commands.add(builder.txCounter(BigInteger.valueOf(startCounter)).creatorAccountId(creator)  
.createdTime(BigInteger.valueOf(time)).addPeer("127.0.0.1:50051", peer_kp.publicKey()).build());

GetTransaction API

GetTransaction API

message GetTransactions {
 repeated string tx_hashes = 1;
}

Intention for the query is to get transaction contents, based on
transaction hash for middleware, which stores only tx hash.

Current iteration

Current iteration

Current iteration

Current iteration

Process and tools used
Iroha project Software Development Process | Iteration cycle

Process and tools used
Piece of Work

Process and tools used
Piece of Work

Process and tools used

Piece of Work

Process and tools used

How to suggest improvements

How to suggest improvements

Upcoming α release

泉
izumi

Upcoming α release
Iroha is ready for KYC features (key-value storage of account).

Cryptography library (ed25519) is checked against RFC specification and is using SHA3 hashing.  
 
It is available to be reused by client applications on Java, Python.

Client library for Iroha contains following API available in the system: 
forming transactions,  
queries,  
getting transaction status  
and is available for Java, Python.

Permission model is improved with domain-specific permissions  
and detachment of user's role.

Asset naming is checked against regular expressions.  
Documentation in API website is consistent with codebase.

Hyperledger α definition

Feature complete, for all features committed to the production release.  
Ready for Proof of Concept-level deployments.  
Performance can be characterized in a predictable way, so that basic PoC's
can be done within the bounds of published expectations.  
APIs are documented. First attempts at end-user documentation have been
made. Developer documentation is further advanced.  
No “highest priority” issues are in an open state.

Q&A

